Application of NMR Spectroscopy in Various Fields of Organic Chemistry

NMR Spectroscopy differs favorably from other physical methods of investigation (IR and UV spectroscopy) in that in some cases it makes it possible to detect directly the formation of intermediate products of chemical reactions (ions, reaction complexes, solvates, etc.). However, it should be noted that the conditions under which the NMR spectra of intermediate products are recorded often differ from the reaction conditions. In these cases some care must be exercised in comparing spectroscopic and chemical data. Despite these stipulations, the use of the NMR method often makes it possible to obtain quite unique data on the structure of intermediate products, making it possible to avoid the need of resorting to various hypotheses, often of a very speculative nature, to explain the mechanism of a process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 42.79 Price includes VAT (France)

Softcover Book EUR 52.74 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Literature Cited

  1. T. Birchall and R. J. Gillespie, Can. J. Chem., 43:1045 (1965). ArticleCASGoogle Scholar
  2. G. E. Maciel and D. D. Traficante, J. Phys. Chem., 69(3):1030 (1965). ArticleCASGoogle Scholar
  3. S. J. Kuhn and J. S. McIntyre, Can. J. Chem., 43:995 (1965). ArticleGoogle Scholar
  4. G. A. Olah, J. Am. Chem. Soc, 87:1103 (1965). ArticleCASGoogle Scholar
  5. W. Bonthrone and D. H. Reid, J. Chem. Soc, 1966B:91. Google Scholar
  6. A. N. Bourns, R. J. Gillespie, and R. J. Smith, Can. J. Chem., 42:1433 (1964). ArticleGoogle Scholar
  7. D. M. Brouwer, E. L. Mackor, and C. MacLean, Rec. Trav. Chim., 85(1): 109 (1966). ArticleCASGoogle Scholar
  8. C. E. Keller and R. Pettit, J. Am. Chem. Soc, 88:604 (1966). ArticleCASGoogle Scholar
  9. M. Fraeser, S. McKenzie, and D. H. Reid, J. Chem. Soc, 1966B:44. Google Scholar
  10. N. E. Rigler, S. P. Bag, D. E. Leyden, J. L. Sudmeier, and C. N. Reilly, Analyt. Chem., 37:872 (1965). ArticleCASGoogle Scholar
  11. M. Christer, W. Koch, W. Simon, and Hch. Zollinger, Helv. Chim. Acta, 45:2077 (1962). ArticleGoogle Scholar
  12. R. Foster and C. A. Fyfe, Tetrahedron, 21:3363 (1965). ArticleCASGoogle Scholar
  13. N. C. Deno, in: Progress in Physical Organic Chemistry, Vol. 2, ed. S. G. Cohen, A. Streitweiser, Jr., and R. W. Taft, Wiley, New York (1964), p. 129. ChapterGoogle Scholar
  14. G. A. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyesi, J. Mclntyre, and I. J. Bastien, J. Am. Chem. Soc, 86:1360 (1964). ArticleCASGoogle Scholar
  15. C. U. Pittman, Jr., and G.A. Olah, J. Am. Chem. Soc, 87:2998 (1965). ArticleCASGoogle Scholar
  16. N. C. Deno, J. S. Liu, J. O. Turner, D. N. Lincoln, and R. E. Fruit, Jr., J. Am. Chem. Soc, 87:3000 (1965). ArticleCASGoogle Scholar
  17. G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc, 86:5682 (1964). ArticleCASGoogle Scholar
  18. N. C. Deno and C. U. Pittman, Jr., J. Am. Chem. Soc, 86:1871 (1964). ArticleCASGoogle Scholar
  19. L. Eberson and S. Winstein, J. Am. Chem. Soc, 87:3506 (1965). ArticleCASGoogle Scholar
  20. G. A. Olah, E. Namanroorth, and M. B. Comisarow, J. Am. Chem. Soc, 89: 711 (1967). ArticleCASGoogle Scholar
  21. V. R. Sandel and H. H. Freedman, J. Am. Chem. Soc, 85:2328 (1963). ArticleCASGoogle Scholar
  22. R. S. Berry, R. Dehl, and W. R. Vaughan, J. Chem. Phys., 34:1460 (1961). ArticleCASGoogle Scholar
  23. Th. J. Katz, M. Joshida, and L. C. Siew, J. Am. Chem. Soc, 87:4516 (1965). ArticleCASGoogle Scholar
  24. S. J. Kuhn and J. S. Mclntyre, Can. J. Chem., 43:375 (1965). ArticleCASGoogle Scholar
  25. R. Foster and C. A. Fyce, Chem. Comm., 241642 (1965). Google Scholar
  26. M. L. Maddox, S. L. Stafford, and H. D. Kaesz, Adv. Organometal. Chem., 3:1 (1965). ArticleCASGoogle Scholar
  27. J. Powell, S. D. Robinson, and B. L. Shaw, Chem. Comm., 78 (1965). Google Scholar
  28. F. S. D’yachkovskii, P. A. Yapovitskii, and V. F. Bystrov, Vysokomolek. soed., 6:659 (1964). Google Scholar
  29. Z. Luz and S. Meiboom, J. Chem. Phys., 40:1748 (1964). ArticleGoogle Scholar
  30. A. Rauk, E. Buncel, R. J. Moir, and S. Wolfe, J. Am. Chem. Soc, 87:5498 (1965). ArticleCASGoogle Scholar
  31. P. L. Levins and Z. B. Papanastassiou, J. Am. Chem. Soc, 87:826 (1965). ArticleCASGoogle Scholar
  32. J. Eisch and G. R. Husk, J. Organometal. Chem., 4:415 (1965). ArticleCASGoogle Scholar
  33. A. Loewenstein and T. M. Connor, Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 67:280 (1963). CASGoogle Scholar
  34. J. J. Delpuech, Bull. Soc. Chim. France, 10:2697 (1964). Google Scholar
  35. L. W. Reeves, in: Advances of Physical Organic Chemistry, Vol. 3, ed. S. G. Cohen, A. Streitweiser, Jr., and R.W. Taft, Wiley, New York (1965), p. 187. Google Scholar
  36. J. Pople, W. Schneider, and N. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York (1959). Google Scholar
  37. J. I. Kaplan, J. Chem. Phys., 28:278 (1958); 29:462 (1958). CASGoogle Scholar
  38. S. Alexander, J. Chem. Phys., 37:967, 974 (1962); 38:1787 (1963). CASGoogle Scholar
  39. Johnson, Jr., J. Chem. Phys., 41:3277 (1964). CASGoogle Scholar
  40. Z. Luz and S. Meiboom, J. Chem. Phys., 40:1058 (1964). ArticleCASGoogle Scholar
  41. Z. Luz, G. Gill, and S. Meiboom, J. Chem. Phys., 30:1540 (1959). ArticleCASGoogle Scholar
  42. J. Hine and J. Houston, J. Org. Chem., 30:1328 (1965). ArticleCASGoogle Scholar
  43. M. Sheinblatt and S. Alexander, J. Am. Chem. Soc, 87:3905 (1965). ArticleCASGoogle Scholar
  44. M. Saunders, P. v. R. Schleyer, and G. A. Olah, J. Am. Ghem. Soc, 86:5679 (1965) Google Scholar
  45. see also F.R. Jensen and B. H. Beck, Tetrahedron Letters, 36:4287 (1966). Google Scholar
  46. F. Kaplan and G. K. Meloy, J. Am. Chem. Soc, 88:950 (1966). ArticleCASGoogle Scholar
  47. M. T. Rogers and J.C. Woodbrey, J. Phys. Chem., 66:540 (1962). ArticleCASGoogle Scholar
  48. F. A. Bovey, F. P. Hood, III, E. W. Anderson, and R. L. Kornegay, J. Chem. Phys., 41:2041 (1964). ArticleCASGoogle Scholar
  49. F. A. Anet, A. J. R. Bourn, and J. S. Lin, J. Am. Chem. Soc, 86:3576 (1964). ArticleCASGoogle Scholar
  50. J. E. Anderson, Quart. Rev., 19:426 (1965). ArticleCASGoogle Scholar
  51. A. Allerhand, Fuming Chen, and H. S. Gutowsky, J. Chem. Phys., 42:3040 (1965). ArticleCASGoogle Scholar
  52. J. L. Burdett and M. T. Rogers, J. Am. Chem. Soc., 86:2105 (1964) ArticleCASGoogle Scholar
  53. J. L. Burdett and M. T. Rogers, Can. J. Chem., 43:1516 (1965) ArticleGoogle Scholar
  54. J. L. Burdett and M. T. Rogers, J. Phys. Chem., 70:939 (1966). ArticleCASGoogle Scholar
  55. S. T. Ioffe, E. I. Fedin, P. V. Petrovskii, and M. I. Kabachnik, Tetrahedron Letters, 24:2661 (1966). ArticleGoogle Scholar
  56. S. Forsen and M. Nilson, Arkiv. Kemi, 19:569 (1962). CASGoogle Scholar
  57. E. W. Garbish, Jr., J. Am. Chem. Soc, 85:1696 (1963). ArticleGoogle Scholar
  58. R. L. Lintvedt and H. F. Holtzclaw, Jr., Inorg. Chem., 5:239 (1966). ArticleCASGoogle Scholar
  59. E. G. Popova, D. N. Shigorin, N..N. Shapet’ko, A. P. Skoldinov, and G. A. Gol’der, Zh. Fiz. Khim., 39:2726 (1965). CASGoogle Scholar
  60. R. U. Lemieux and J. D. Stevens. Can. J. Chem., 44:249 (1966). ArticleCASGoogle Scholar
  61. G. Schröder, Angew. Chem., Int. Ed., 4:752 (1965). ArticleGoogle Scholar
  62. E. Ciganek, J. Am. Chem. Soc, 87:1149 (1965). ArticleCASGoogle Scholar
  63. E. N. Marvell, G. Caple, T. A. Gosink, and G. Zimmer, J. Am. Chem. Soc, 88:619 (1966). ArticleCASGoogle Scholar
  64. D. R. Eaton, A. D. Josey, W. D. Phillips, and R. E. Benson, J. Chem. Phys., 39:3513 (1963). ArticleCASGoogle Scholar
  65. A. Abragam, Principles of Nuclear Magnetism, Oxford Univ. Press, New York (1961). Google Scholar
  66. K. H. Hausser, J. Chim. Phys., 61:204 (1964). CASGoogle Scholar
  67. J. S. Waugh, ed., Advances in Magnetic Resonance, Academic Press, New York (1965). Google Scholar

Author information

Authors and Affiliations

  1. Lensovet Institute of Technology, Leningrad, USSR B. I. Ionin & B. A. Ershov
  1. B. I. Ionin
You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar

Rights and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Ionin, B.I., Ershov, B.A. (1970). Application of NMR Spectroscopy in Various Fields of Organic Chemistry. In: NMR Spectroscopy in Organic Chemistry. Physical Methods in Organic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1785-2_6

Download citation

Share this chapter

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative